Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38365249

RESUMO

In Burkholderia-Riptortus symbiosis, the host bean bug Riptortus pedestris harbors Burkholderia symbionts in its symbiotic organ, M4 midgut, for use as a nutrient source. After occupying M4, excess Burkholderia symbionts are moved to the M4B region, wherein they are effectively digested and absorbed. Previous studies have shown that M4B has strong symbiont-specific antibacterial activity, which is not because of the expression of antimicrobial peptides but rather because of the expression of digestive enzymes, mainly cathepsin L protease. However, in this study, inhibition of cathepsin L activity did not reduce the bactericidal activity of M4B, indicating that there is an unknown digestive mechanism that renders specifically potent bactericidal activity against Burkholderia symbionts. Transmission electron microscopy revealed that the lumen of symbiotic M4B was filled with a fibrillar matter in contrast to the empty lumen of aposymbiotic M4B. Using chromatographic and electrophoretic analyses, we found that the bactericidal substances in M4B existed as high-molecular-weight (HMW) complexes that were resistant to protease degradation. The bactericidal HMW complexes were visualized on non-denaturing gels using protein- and polysaccharide-staining reagents, thereby indicating that the HMW complexes are composed of proteins and polysaccharides. Strongly stained M4B lumen with Periodic acid-Schiff (PAS) reagent in M4B paraffin sections confirmed HMW complexes with polysaccharide components. Furthermore, M4B smears stained with Periodic acid-Schiff revealed the presence of polysaccharide fibers. Therefore, we propose a key digestive mechanism of M4B: bacteriolytic fibers, polysaccharide fibers associated with digestive enzymes such as cathepsin L, specialized for Burkholderia symbionts in Riptortus gut symbiosis.


Assuntos
Burkholderia , Heterópteros , Animais , Catepsina L/metabolismo , Catepsina L/farmacologia , Simbiose/fisiologia , Ácido Periódico/metabolismo , Ácido Periódico/farmacologia , Insetos , Heterópteros/microbiologia , Bactérias , Polissacarídeos/metabolismo , Burkholderia/fisiologia
2.
Biol Reprod ; 109(6): 904-917, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37712895

RESUMO

Cathepsin L plays physiological and pathological roles in immune responses, cancer, metamorphosis, and oogenesis in several species. However, the function of Cathepsin L in medaka ovaries remains unclear. Therefore, here, we examined the physiological functions of Cathepsin L in the medaka ovaries. Cathepsin L mRNA transcripts and proteins were found to be constitutively expressed in the ovaries of Oryzias latipes over a 24-h spawning cycle. Expression was localized within the oocyte cytoplasm of growing follicles and the follicle layer of preovulatory and postovulatory follicles. Moreover, the active form of Cathepsin L was highly expressed in the follicle layer of periovulatory follicles and the ovaries 2-6 h after ovulation. Recombinant Cathepsin L was activated under acidic conditions and exhibited enzymatic activity in acidic and neutral pH conditions. However, extracellular matrix proteins were degraded by recombinant Cathepsin L under acidic, not neutral pH conditions. Cathepsin L was secreted from preovulatory follicles, while active recombinant Cathepsin L was detected in the conditioned medium of a medaka cell line, OLHNI-2. Mechanistically, recombinant Cathepsin L activates recombinant urokinase-type plasminogen activator-1, which is expressed within the follicle layers post-ovulation. Meanwhile, the treatment of medakas with an E-64 or anti-Cathepsin L antibody effectively blocked follicular layer degeneration and degradation after ovulation, whereas in vitro ovulation was not inhibited by either. Collectively, the findings of this study indicate that although Cathepsin L does not impact ovulation in medakas, it contributes to the degeneration and degradation of the follicle layers following ovulation via activation of urokinase-type plasminogen activator-1, and not via the degradation of extracellular matrix proteins.


Assuntos
Oryzias , Ovário , Feminino , Animais , Ovário/fisiologia , Oryzias/fisiologia , Catepsina L/genética , Catepsina L/farmacologia , Ativador de Plasminogênio Tipo Uroquinase/farmacologia , Ovulação/fisiologia , Proteínas da Matriz Extracelular
3.
Clin Sci (Lond) ; 136(10): 715-731, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35502764

RESUMO

Podocyte damage and loss are the early event in the development of focal segmental glomerulosclerosis (FSGS). Podocytes express angiotensin II type-2-receptor (AT2R), which may play a key role in maintaining kidney integrity and function. Here, we examined the effects of AT2R deletion and AT2R agonist compound 21 (C21) on the evolution of FSGS. FSGS was induced by adriamycin (ADR) injection in both male wild-type (WT) and AT2R knockout (KO) mice. C21 was administered to WT-FSGS mice either one day before or 7 days after ADR (Pre-C21 or Post-C21), using two doses of C21 at either 0.3 (low dose, LD) or 1.0 (high dose, HD) mg/kg/day. ADR-induced FSGS was more severe in AT2RKO mice compared with WT-FSGS mice, and included profound podocyte loss, glomerular fibrosis, and albuminuria. Glomerular cathepsin L expression increased more in AT2RKO-FSGS than in WT-FSGS mice. C21 treatment ameliorated podocyte injury, most significantly in the Pre C21-HD group, and inhibited glomerular cathepsin L expression. In vitro, Agtr2 knock-down in mouse podocyte cell line given ADR confirmed the in vivo data. Mechanistically, C21 inhibited cathepsin L expression, which protected synaptopodin from destruction and stabilized actin cytoskeleton. C21 also prevented podocyte apoptosis. In conclusion, AT2R activation by C21 ameliorated ADR-induced podocyte injury in mice by the inhibition of glomerular cathepsin L leading to the maintenance of podocyte integrity and prevention of podocyte apoptosis.


Assuntos
Glomerulosclerose Segmentar e Focal , Nefropatias , Podócitos , Receptor Tipo 2 de Angiotensina/metabolismo , Angiotensina II/metabolismo , Animais , Catepsina L/metabolismo , Catepsina L/farmacologia , Glomerulosclerose Segmentar e Focal/induzido quimicamente , Glomerulosclerose Segmentar e Focal/genética , Glomerulosclerose Segmentar e Focal/metabolismo , Imidazóis , Nefropatias/metabolismo , Masculino , Camundongos , Camundongos Knockout , Podócitos/metabolismo , Sulfonamidas , Tiofenos
4.
Biochemistry ; 61(4): 228-238, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35119840

RESUMO

CA-074 is a selective inhibitor of cathepsin B, a lysosomal cysteine protease. CA-074 has been utilized in numerous studies to demonstrate the role of this protease in cellular and physiological functions. Cathepsin B in numerous human disease mechanisms involves its translocation from acidic lysosomes of pH 4.6 to neutral pH 7.2 of cellular locations, including the cytosol and extracellular environment. To gain in-depth knowledge of CA-074 inhibition under these different pH conditions, this study evaluated the molecular features, potency, and selectivity of CA-074 for cathepsin B inhibition under acidic and neutral pH conditions. This study demonstrated that CA-074 is most effective at inhibiting cathepsin B at an acidic pH of 4.6 with nM potency, which was more than 100-fold more potent than its inhibition at a neutral pH of 7.2. The pH-dependent inhibition of CA-074 was abolished by methylation of its C-terminal proline, indicating the requirement for the free C-terminal carboxyl group for pH-dependent inhibition. Under these acidic and neutral pH conditions, CA-074 maintained its specificity for cathepsin B over other cysteine cathepsins, displayed irreversible inhibition, and inhibited diverse cleavages of peptide substrates of cathepsin B assessed by profiling mass spectrometry. Molecular docking suggested that pH-dependent ionic interactions of the C-terminal carboxylate of CA-074 occur with His110 and His111 residues in the S2' subsite of the enzyme at pH 4.6, but these interactions differ at pH 7.2. While high levels of CA-074 or CA-074Me (converted by cellular esterases to CA-074) are used in biological studies to inhibit cathepsin B at both acidic and neutral pH locations, it is possible that adjusted levels of CA-074 or CA-074Me may be explored to differentially affect cathepsin B activity at these different pH values. Overall, the results of this study demonstrate the molecular, kinetic, and protease specificity features of CA-074 pH-dependent inhibition of cathepsin B.


Assuntos
Catepsina B/antagonistas & inibidores , Inibidores de Cisteína Proteinase/farmacologia , Dipeptídeos/farmacologia , Animais , Catepsina B/metabolismo , Catepsina L/farmacologia , Catepsinas/metabolismo , Cisteína/metabolismo , Inibidores de Cisteína Proteinase/química , Citosol/metabolismo , Dipeptídeos/química , Humanos , Concentração de Íons de Hidrogênio , Cinética , Lisossomos/metabolismo , Espectrometria de Massas/métodos , Simulação de Acoplamento Molecular , Peptídeos/metabolismo
5.
PLoS One ; 14(4): e0215408, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30986254

RESUMO

Cathepsin L (CTSL) has been proved to help contain leishmaniasis and mycoplasma infection in mice by supporting cellular immune responses, but the regulatory functions of CTSL on mucosal immune responses haven't been tested and remain undefined. Here, we investigated the effects of CTSL on SIgA responses and invariant chain (Ii) degradations in the co-cultured swine dendritic cells (DCs) and B cells system in vitro. When the cells system were transfected with vector CTSL-GFP or incubated with recombinant CTSL (rCTSL) before they were infected with Mycoplasma hyopneumoniae (M.hp), SIgA significantly increased and Ii chain was degraded into smaller intermediates, while SIgA decreased when CTSL was knockdown or inhibited with E64. To confirm the SIgA responses promoted by CTSL contribute to the resistance to mycoplasma pneumonia, pigs injected with rCTSL before they were challenged with M.hp, showed milder clinical symptoms and histopathological damage of lungs, less mycoplasma burden together with higher secretion of SIgA, percentages of CD4+ T cells and level of MHC II molecules comparing with the group without rCTSL. Collectively, these results suggested that rCTSL could provide effective protection for piglets against mycoplasma pneumonia by enhancing M.hp-specific mucosal immune responses through its role in antigen presentation by processing the invariant chain.


Assuntos
Apresentação de Antígeno/efeitos dos fármacos , Catepsina L/farmacologia , Imunidade nas Mucosas/efeitos dos fármacos , Imunoglobulina A/imunologia , Mycoplasma hyopneumoniae/imunologia , Pneumonia Suína Micoplasmática/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Catepsina L/imunologia , Feminino , Antígenos de Histocompatibilidade Classe II/imunologia , Masculino , Pneumonia Suína Micoplasmática/tratamento farmacológico , Pneumonia Suína Micoplasmática/patologia , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/farmacocinética , Suínos
6.
PLoS One ; 11(10): e0164501, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27716790

RESUMO

Host-derived proteases can augment or help to clear infections. This dichotomy is exemplified by cathepsin L (CTSL), which helps Hendra virus and SARS coronavirus to invade cells, but is essential for survival in mice with mycoplasma pneumonia. The present study tested the hypothesis that CTSL protects mice from serious consequences of infection by the orthomyxovirus influenza A, which is thought to be activated by host-supplied proteases other than CTSL. Ctsl-/- mice infected with influenza A/Puerto Rico/8/34(H1N1) had larger lung viral loads and higher mortality than infected Ctsl+/+ mice. Lung inflammation in surviving infected mice peaked 14 days after initial infection, accompanied marked focal distal airway bronchiolization and epithelial metaplasia followed by desquamation and fibrotic interstitial remodeling, and persisted for at least 6 weeks. Most deaths occurred during the second week of infection in both groups of mice. In contrast to mycoplasma pneumonia, infiltrating cells were predominantly mononuclear rather than polymorphonuclear. The histopathology of lung inflammation and remodeling in survivors was similar in Ctsl-/- and Ctsl+/+ mice, although Ctsl+/+ mice cleared immunoreactive virus sooner. Furthermore, Ctsl-/- mice had profound deficits in CD4+ lymphocytes before and after infection and weaker production of pathogen-specific IgG. Thus, CTSL appears to support innate as well as adaptive responses, which confer a survival advantage on mice infected with the orthomyxovirus influenza A.


Assuntos
Catepsina L/farmacologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Infecções por Orthomyxoviridae/tratamento farmacológico , Animais , Linfócitos T CD4-Positivos/efeitos dos fármacos , Feminino , Pulmão/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia/tratamento farmacológico , Pneumonia/virologia
7.
Parasitol Res ; 115(11): 4397-4403, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27535679

RESUMO

Previously, it was reported that caffeic acid esters inhibit the growth of bloodstream forms of Trypanosoma brucei and the activity of its major lysosomal cathepsin L-like cysteine protease, TbCATL. However, whether this trypanocidal activity is due to inactivation of TbCATL has not so far been demonstrated. Caffeic acid isopentyl ester (isopentyl caffeate) displayed antitrypanosomal activity against T. brucei bloodstream forms with minimum inhibitory concentration (MIC) and 50 % growth inhibition (GI50) values of 1 and 0.31 µg/ml, respectively. The ester also inhibited the activity of purified TbCATL but with a 27-fold higher half maximal inhibitory concentration (IC50) value of 8.5 µg/ml compared to its GI50 value. In contrast to previous suggestion, isopentyl caffeate did not interact with the active site of TbCATL but inhibited the enzyme in a non-competitive way. In addition, the ester was ineffective in blocking the proteolysis in the lysosome of the parasite, which, however, is a hallmark for inhibitors whose trypanocidal action is through inactivation of TbCATL. These results suggest that the antitrypanosomal activity of isopentyl caffeate (and probably of other caffeic acid esters) cannot be attributed to inhibition of TbCATL. Nevertheless, caffeic acid esters are interesting compounds with promising antitrypanosomal activity. This is supported by a more than 100 times less sensitivity of human HL-60 cells to isopentyl caffeate indicating that the ester has a favourable selectivity profile.


Assuntos
Ácidos Cafeicos/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Animais , Catepsina L/farmacologia , Células HL-60 , Humanos , Testes de Sensibilidade Microbiana
8.
J Sci Food Agric ; 96(9): 3233-9, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26493936

RESUMO

BACKGROUND: Texture deterioration often negatively affects sensory attributes and commercial values of ice-stored fish fillets. The mechanism of softening of fish fillets during chilling storage is not fully resolved. Grass carp is a predominant freshwater fish species in China. The objective of the present study was to investigate the differential role of endogenous cathepsin and microorganisms in texture softening of ice-stored grass carp fillets. RESULTS: The fillets were immersed in either NaN3 solution to reduce microbial activity or in iodoacetic acid solution to exclude cathepsin activity before ice storage. Treatment with NaN3 reduced microbial load of fillets below 2 log CFU g(-1) muscle during the entire storage period, and had no significant influence on the cathepsin activity and proteolysis. But the shear force of fillets treated with NaN3 decreased by 66% after 21 days of storage. Meanwhile, treatment with iodoacetic acid inactivated cathepsin B and B + L but did not significantly affect the microbial growth of fillets. Compared to NaN3 treatment, iodoacetic acid effectively alleviated softening and inhibited the increase in TCA-soluble peptides during storage. CONCLUSION: This study demonstrated that proteolysis induced by endogenous cathepsins, rather than microorganisms, plays an important role in texture softening of ice-stored grass carp fillets. © 2015 Society of Chemical Industry.


Assuntos
Carpas/microbiologia , Catepsinas/metabolismo , Catepsinas/fisiologia , Conservação de Alimentos/métodos , Alimentos Marinhos , Animais , Bactérias/efeitos dos fármacos , Catepsina B/metabolismo , Catepsina D/metabolismo , Catepsina D/fisiologia , Catepsina L/metabolismo , Catepsina L/farmacologia , China , Temperatura Baixa , Proteínas de Peixes/metabolismo , Armazenamento de Alimentos , Gelo , Ácido Iodoacético/farmacologia , Proteólise , Azida Sódica/farmacologia
9.
Brain Res ; 1631: 72-9, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26655064

RESUMO

PURPOSE: The effects of cathepsin L on claudin-1 expression were investigated under hyperthermic condition in a blood-brain barrier (BBB) model in vitro, in order to estimate the potential effects of hyperthermia on BBB dysfunction. MATERIALS AND METHODS: Brain microvascular endothelial cells (BMECs) and astrocytes were obtained from rat brain. The BBB models were randomly divided into a sham (37°C) group, a 39°C group, a 37°C+cathepsin L group and a 39°C+cathepsin L group. The permeability of BBB was judged. The expressions of cathepsin L in astrocytes and claudin-1 in BMECs were detected using immunohistochemistry method and western blot assay. RESULTS: The permeability of BBB models was higher in the 39°C group than in the sham group. The cathepsin L expression in astrocytes was higher in the 39°C group than in the sham group (P<0.01), whereas the claudin-1 expression in BMECs was lower in the 39°C group than in the sham group (P<0.01). The claudin-1 expression in BMECs was significantly lower in the 37°C+cathepsin L group than in the sham group (P<0.01). At the same time point, the claudin-1 expression in BMECs was significantly lower in the 39°C+cathepsin L group than in the 37°C+cathepsin L group (P<0.01). CONCLUSION: Hyperthermia can probably decrease claudin-1 expression in BMECs by upregulating cathepsin L expression in astrocytes in a BBB model in vitro.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Catepsina L/farmacologia , Claudina-1/biossíntese , Febre/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Transporte Biológico/efeitos dos fármacos , Encéfalo/irrigação sanguínea , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Catepsina L/metabolismo , Permeabilidade da Membrana Celular , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Hipertermia Induzida/métodos , Técnicas In Vitro , Microvasos , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Regulação para Cima
10.
Dev Comp Immunol ; 53(1): 79-84, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26159404

RESUMO

Because gut symbiotic bacteria affect host biology, host insects are expected to evolve some mechanisms for regulating symbiont population. The bean bug, Riptortus pedestris, harbors the Burkholderia genus as a gut symbiont in the midgut organ, designated as the M4 region. Recently, we demonstrated that the lysate of M4B, the region adjacent to M4, harbors potent antibacterial activity against symbiotic Burkholderia but not to cultured Burkholderia. However, the bona fide substance responsible for observed antibacterial activity was not identified in the previous study. Here, we report that cathepsin-L-like protease purified from the lysate of M4B showed strong antibacterial activity against symbiotic Burkholderia but not the cultured Burkholderia. To further confirm this activity, recombinant cathepsin-L-like protease expressed in Escherichia coli also showed antibacterial activity against symbiotic Burkholderia. These results suggest that cathepsin-L-like protease purified from the M4B region plays a critical role in controlling the population of the Burkholderia gut symbiont.


Assuntos
Antibacterianos/farmacologia , Burkholderia/efeitos dos fármacos , Catepsina L/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Heterópteros/microbiologia , Sequência de Aminoácidos , Animais , Burkholderia/crescimento & desenvolvimento , Catepsina L/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Microbioma Gastrointestinal/imunologia , Trato Gastrointestinal/microbiologia , Heterópteros/imunologia , Dados de Sequência Molecular , Simbiose
11.
Parasitol Res ; 113(1): 243-50, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24218177

RESUMO

Thirty goats were randomly allocated in five groups of six animals each, for immunization with 1 × 10(14) phage particles of clones 11, 13, and 13 with Quil A adjuvant and wild-type M13KE phage at the beginning and 4 weeks later. The control group received phosphate-buffered saline. All groups were challenged with 200 metacercariae at week 6 and slaughtered 14 weeks later. The mean worm burdens after challenge were reduced by 46.91% and 79.53% in goats vaccinated with clones 13 and 13 with Quil A (P < 0.05), respectively; no effect was observed in animals immunized with clone 11 and M13KE phage. Animals receiving clones 11, 13, and 13 with Quil A showed a significant reduction in eggs output. Vaccinated animals produced parasite-specific total IgG antibody which were boosted after challenge with metacercariae of F. hepatica. Furthermore, levels of anti-phage total IgG increased rapidly within 2 weeks of the first vaccination and were always significantly higher in all vaccinated goats than in the infected control group. The fluke burden of goats immunized with clones 13 and 13 with Quil A was significantly correlated with IgG2 and total IgG. Goats vaccinated with phage clones produced significantly high titres of IgG1 and IgG2 antibodies indicating a mixed Th1/Th2 response. These data indicate that cathepsin L1 mimotopes has a potential as a vaccine candidate against Fasciola hepatica, whose efficacy will be evaluated in other host species, including those of veterinary importance.


Assuntos
Adjuvantes Imunológicos/farmacologia , Catepsina L/farmacologia , Fasciolíase/prevenção & controle , Cabras/imunologia , Vacinas/uso terapêutico , Sequência de Aminoácidos , Animais , Anticorpos Anti-Helmínticos/imunologia , Fasciola hepatica , Fasciolíase/imunologia , Fasciolíase/veterinária , Cabras/parasitologia , Imunidade Humoral , Imunoglobulina G/imunologia , Dados de Sequência Molecular , Contagem de Ovos de Parasitas , Biblioteca de Peptídeos , Saponinas de Quilaia , Saponinas/farmacologia , Células Th1/imunologia , Células Th2/imunologia , Vacinas/imunologia
12.
Toxicol Appl Pharmacol ; 265(1): 10-8, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23022514

RESUMO

The Type B trichothecene deoxynivalenol (DON), a ribotoxic mycotoxin known to contaminate cereal-based foods, induces ribosomal RNA (rRNA) cleavage in the macrophage via p38-directed activation of caspases. Here we employed the RAW 264.7 murine macrophage model to test the hypothesis that this rRNA cleavage pathway is similarly induced by other ribotoxins. Capillary electrophoresis confirmed that the antibiotic anisomycin (≥25ng/ml), the macrocylic trichothecene satratoxin G (SG) (≥10ng/ml) and ribosome-inactivating protein ricin (≥300ng/ml) induced 18s and 28s rRNA fragmentation patterns identical to that observed for DON. Also, as found for DON, inhibition of p38, double-stranded RNA-activated kinase (PKR) and hematopoietic cell kinase (Hck) suppressed MAPK anisomycin-induced rRNA cleavage, while, in contrast, their inhibition did not affect SG- and ricin-induced rRNA fragmentation. The p53 inhibitor pifithrin-µ and pan caspase inhibitor Z-VAD-FMK suppressed rRNA cleavage induced by anisomycin, SG and ricin, indicating that these ribotoxins shared with DON a conserved downstream pathway. Activation of caspases 8, 9 and 3 concurrently with apoptosis further suggested that rRNA cleavage occurred in parallel with both extrinsic and intrinsic pathways of programmed cell death. When specific inhibitors of cathepsins L and B (lysosomal cysteine cathepsins active at cytosolic neutral pH) were tested, only the former impaired anisomycin-, SG-, ricin- and DON-induced rRNA cleavage. Taken together, the data suggest that (1) all four ribotoxins induced p53-dependent rRNA cleavage via activation of cathepsin L and caspase 3, and (2) activation of p53 by DON and anisomycin involved p38 whereas SG and ricin activated p53 by an alternative mechanism.


Assuntos
Clivagem do RNA/efeitos dos fármacos , RNA Ribossômico/efeitos dos fármacos , Tricotecenos/toxicidade , Animais , Anisomicina/toxicidade , Apoptose/efeitos dos fármacos , Western Blotting , Caspase 8/efeitos dos fármacos , Catepsina L/farmacologia , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Inibidores da Síntese de Ácido Nucleico/toxicidade , Proteínas Proto-Oncogênicas c-hck/metabolismo , RNA Ribossômico/isolamento & purificação , Ricina/toxicidade , Tricotecenos/farmacologia , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
13.
Virol J ; 7: 143, 2010 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-20587066

RESUMO

BACKGROUND: Baculovirus comprise the largest group of insect viruses most studied worldwide, mainly because they efficiently kill agricultural insect pests. In this study, two recombinant baculoviruses containing the ScathL gene from Sarcophaga peregrina (vSynScathL), and the Keratinase gene from the fungus Aspergillus fumigatus (vSynKerat), were constructed, and their insecticidal properties analysed against Spodoptera frugiperda larvae. RESULTS: Bioassays of third-instar and neonate S. frugiperda larvae with vSynScathL and vSynKerat showed a decrease in the time needed to kill the infected insects when compared to the wild type virus. We have also shown that both recombinants were able to increase phenoloxidase activity in the hemolymph of S. frugiperda larvae. The expression of proteases in infected larvae resulted in destruction of internal tissues late in infection, which could be the reason for the increased viral speed of kill. CONCLUSIONS: Baculoviruses and their recombinant forms constitute viable alternatives to chemical insecticides. Recombinant baculoviruses containing protease genes can be added to the list of engineered baculoviruses with great potential to be used in integrated pest management programs.


Assuntos
Engenharia Genética , Inseticidas/farmacologia , Nucleopoliedrovírus/genética , Peptídeo Hidrolases/farmacologia , Controle Biológico de Vetores/métodos , Spodoptera/virologia , Animais , Aspergillus fumigatus/enzimologia , Catepsina L/genética , Catepsina L/metabolismo , Catepsina L/farmacologia , Linhagem Celular , Dípteros/enzimologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/farmacologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/farmacologia , Inseticidas/metabolismo , Larva/efeitos dos fármacos , Larva/virologia , Nucleopoliedrovírus/fisiologia , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Spodoptera/efeitos dos fármacos , Spodoptera/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...